2024年1月20日(土)、21日(日)の2日間、長野県諏訪清陵高校,長野県諏訪二葉高校、長野県松本美須々ケ丘高校、岐阜県立恵那高校の生徒を対象に、天文学実習をおこないました。銀河の写真から、銀河までの距離を推定し、それらの銀河の後退速度を使って、宇宙の年齢を考えてもらいました。




2024年1月20日(土)、21日(日)の2日間、長野県諏訪清陵高校,長野県諏訪二葉高校、長野県松本美須々ケ丘高校、岐阜県立恵那高校の生徒を対象に、天文学実習をおこないました。銀河の写真から、銀河までの距離を推定し、それらの銀河の後退速度を使って、宇宙の年齢を考えてもらいました。
共同プレスリリース
橘 省吾(宇宙惑星科学機構/地球惑星科学専攻 教授)
小惑星回収試料や隕石の反射スペクトルは、観測で得られる小惑星の反射スペクトルから小惑星の構成物質を特定するための手がかりとなります。
東北大学大学院理学研究科地学専攻の天野香菜大学院生(現、客員研究者)、中村智樹教授、国立研究開発法人 産業技術総合研究所の松岡萌研究員、東京大学大学院理学系研究科附属宇宙惑星科学機構・地球惑星科学専攻の橘省吾教授らの研究グループは、小惑星探査機はやぶさ2が小惑星リュウグウから回収した試料を地球大気と反応させないように工夫して反射スペクトルを測定しました。リュウグウ試料、リュウグウと同種の小惑星から飛来した隕石、および隕石を実験的に加熱した試料を比較し、隕石が地球大気の水や酸素と反応したことでその反射スペクトルが宇宙にあった状態よりも明るく変化したことを示しました。本成果を踏まえ、隕石の地上での変質によって反射スペクトルがどのように変化しうるかを考慮することで、観測によって小惑星の構成物質を特定する精度の向上が期待されます。
本成果は2023年12月7日に米国科学振興協会(AAAS)が発行する学術誌 Science Advancesに掲載されました。
詳細については、以下をご参照ください。
共同プレスリリース
瀧川 晶(地球惑星科学専攻 准教授)
橘 省吾(宇宙惑星科学機構/地球惑星科学専攻 教授)
太陽から遠く離れた場所で生まれた氷天体や彗星にはアンモニウム塩のような窒素化合物が大量に貯蔵されています。このような窒素を含む固体は生命の材料物質としてとても重要だと考えられていますが、地球軌道の地域に輸送される証拠は見つかっていませんでした。本研究では、地球の近くに軌道をもつ小惑星リュウグウの砂を電子顕微鏡で調べ、砂のごく表面が窒化した鉄(窒化鉄:Fe4N)に覆われていることを発見しました。窒化鉄は、磁鉄鉱と呼ばれる鉄原子と酸素原子の鉱物の表面で見られます。我々は、氷天体からやってきたアンモニア化合物を大量に含む微小な隕石がリュウグウに衝突して、磁鉄鉱の表面で化学反応が起こり、この窒化鉄が形成したと考えました。小惑星の表層では、太陽から吹くイオンの風(太陽風)の照射などによって磁鉄鉱の表面から酸素が失われていて、アンモニアと反応しやすい金属鉄がごく表面に形成しています。このため、磁鉄鉱の表面ではアンモニアに由来する窒化鉄の合成が促されたと推測しています。この微小隕石は太陽系遠方の氷天体からやってきたかもしれず、これまで気づかれてきたよりも多くの量の窒素化合物が太陽系の地球付近に輸送されて、生命の材料となった可能性があります。
本成果は、京都大学白眉センターの松本徹 特定助教、理学研究科の野口高明教授、三宅亮准教授、伊神洋平助教、化学研究所の治田充貴准教授、および国際的な共同研究者のグループによって行われ、2023年11月30日に英国の国際学術誌「Nature Astronomy」にオンライン掲載されました。
本研究成果には、地球惑星科学専攻の 橘省吾教授、瀧川晶准教授が参加しています。
詳細については、以下をご参照ください。
東京工業大学 理学院 地球惑星科学系の横山哲也教授、東京大学 大学院理学系研究科の飯塚毅准教授と橘省吾教授、北海道大学 大学院理学研究院の圦本尚義教授らの研究グループは、Cb型小惑星「リュウグウ」の同位体組成を測定し、リュウグウで生じた激しい水質変成と水循環により、クロム同位体組成の局所的な不均質が生じたことを突き止めました。
リュウグウ試料の初期分析により、Cb型小惑星「リュウグウ」はイヴナ型炭素質隕石に似た化学組成や鉱物組成を持つことが明らかとなったが、クロムの核合成起源同位体異常については、リュウグウとイヴナ型炭素質隕石の間にわずかなズレが見られており、その原因究明が待たれていました。
研究グループは、計5つのリュウグウ試料を対象に、クロム(54Cr)とチタン(50Ti)の核合成起源同位体異常を測定しました。その結果、54Cr同位体異常はイヴナ型隕石の平均値より高い値から低い値まで、有意な変動が見られました。この変動は、短寿命核種であるマンガン-53(53Mn)の放射壊変に由来するクロム同位体(53Cr)の変動と逆相関することから、リュウグウ起源天体で生じた水質変成・水循環により54Crが乏しい箇所と、Mnに富む炭酸塩(53Crに富む)箇所が生じたと考えられます。また、各々のリュウグウ試料(7~24 mg)を合算した物質(約90 mg)の54Cr同位体異常は、イヴナ型炭素質隕石の平均値と一致しました。すなわち、本来の同位体組成を正しく知るには、一定の均質試料の分析が必要といえます。OSIRIS-RExが持ち帰った小惑星ベヌー試料の初期分析においても、不均質の影響を避けるために、一定量(0.1 g以上)の試料を用いた分析が望ましいことが判明しました。
本研究成果は、日本時間2023年11月9日に、Science Advances誌にオンライン掲載されました。
詳細については、以下をご参照ください。
共同プレスリリース
河野 孝太郎(天文学教育研究センター 教授)
国立天文台の泉拓磨助教を中心とする国際研究チームは、アルマ望遠鏡を用いて、近傍宇宙にあるコンパス座銀河を約1光年という非常に高い解像度で観測し、超巨大ブラックホール周辺わずか数光年の空間スケールでのガス流とその構造を、プラズマ・原子・分子の全ての相において定量的に測定することに世界で初めて成功しました。その結果、超巨大ブラックホールへ向かう降着流を明確にとらえ、降着流が「重力不安定」と呼ばれる物理機構により生じていることをも明らかにしました。さらに、降着流の大半はブラックホールの成長には使われず、原子ガスか分子ガスとして一度ブラックホール付近から噴き出た後に、ガス円盤に舞い戻って再びブラックホールへの降着流と化す、あたかも噴水のようなガスの循環が起きていることも分かりました。超巨大ブラックホールの成長メカニズムの包括的な理解に向けた重要な成果です。
これらの観測成果は、Izumi et al. “Supermassive black hole feeding and feedback observed on sub-parsec scales”として米国学術雑誌 Science に2023年11月3日付で掲載 (DOI: 10.1126/science.adf0569) されました。
なお、本研究は、天文学教育研究センターの河野孝太郎教授が参加しています。
詳しくは、国立天文台 、国立天文台アルマプロジェクト のホームページをご覧ください。
国立大学法人東海国立大学機構 名古屋大学宇宙地球環境研究所のリン キスラー 教授(兼:米国ニューハンプシャー大学教授)、三好 由純 教授、堀 智昭 特任准教授らは、宇宙航空研究開発機構の浅村 和史 准教授、篠原 育 教授、東京大学大学院理学系研究科の笠原 慧 准教授、桂華 邦裕 助教、大阪大学の横田 勝一郎 准教授、及び米国研究者との国際共同研究で、宇宙嵐を引き起こしているのは、従来考えられてきた太陽起源のプラズマよりも、地球起源のプラズマが主要因であることを発見しました。
研究チームは、国際協力によって、日本のジオスペース探査衛星「あらせ」、米国 NASAや欧州ESAの合計4機の科学衛星のデータを用いて解析しました。その結果、地球近傍の宇宙空間(ジオスペース)で、太陽と地球起源のプラズマの組成を分離することに初めて成功し、宇宙嵐時に、地球磁気圏のプラズマが太陽起源から地球起源へと変化することを発見しました。また、宇宙嵐の発達において、はじめは地球起源の水素イオンが支配的であり、その後、地球起源の酸素イオンが宇宙嵐の主要因となることも同定しました。
これは、従来考えられてきた太陽起源のイオンだけでなく、地球起源のイオンも、宇宙嵐の発達に影響を与えることを示しています。宇宙嵐のときには地球周辺の宇宙環境が大きく変化し、人工衛星に障害が生じたり、地上で強い電流が流れたりして送電網に影響が及ぶことがあります。本研究は、宇宙嵐による宇宙環境の変化を理解したり、宇宙嵐を予測したりするためには、太陽からのプラズマだけではなく、地球からのプラズマの挙動を正確に理解する必要があることを示しており、これまでの宇宙嵐の理解に大きな変革を迫るものです。
本研究成果は、2023年10月30日午後7時(日本時間)付イギリス科学誌「Nature Communications」に掲載されました。
詳細については、以下をご参照ください。
共同プレスリリース
藤井 通子(天文学専攻 准教授)
超新星爆発(注1)は、銀河の星形成(注2)や元素分布に影響を与える重要な現象です。しかし、この超新星爆発の計算をこれまでの銀河形成シミュレーション(注3)に組み込むと、計算コストが増大し、最先端の計算機を使用しても、銀河内での超新星爆発の影響を直接的に計算するのは困難でした。東京大学大学院理学系研究科天文学専攻の平島敬也大学院生、藤井通子准教授、物理学専攻の森脇可奈助教らによる研究グループは、従来のシミュレーションに替わり深層学習(注4)を用いて超新星爆発の広がりを予測する手法を開発しました。今後、この深層学習による予測結果を銀河形成シミュレーションに組み込むことで、銀河形成シミュレーションの精度の向上と高速化が期待されます。
〈研究の背景〉重い星が一生を終える際、超新星爆発と呼ばれる壮大な爆発を起こします。この爆発が分子雲(注5)の中で起きると、大量のエネルギーでガスを押しのけ、新しい星の形成を阻む一方で、一部のガスを加速させ乱流を駆動し、新しい星の形成を促進すると考えられています。また、この爆発は、私たちの生命に必要な元素(炭素、酸素、鉄など)を宇宙に散布します。そのため、超新星爆発の影響を正確に理解することが銀河の形成・進化過程を解明する上で不可欠となっています。
一方で、銀河は多数の星、ガス、ダスト(塵)、およびダークマターなどで構成されており、重力や流体の動き、冷却、そして超新星爆発など多様なプロセスが銀河の進化を駆動します。これらの相互作用を単純な方程式だけを使って説明するのは困難であるため、数値シミュレーションにより研究が進められてきました。このようなシミュレーションでは、銀河全体の巨大なスケール(約10万光年)から、数光年単位の細かなスケールまでを対象に計算しています(図1)。しかしながら、天の川のような大きな銀河全体のシミュレーションにおいて、超新星爆発の詳細な影響を再現するのは、最先端のスーパーコンピュータ「富岳」(注6)を使っても、計算量や効率性の観点から非常に難しい課題となっています。
〈研究の内容〉東京大学を中心とした研究チームは、動画生成技術を活用して、3次元の数値シミュレーションの結果を高速に再現する新しいモデル「3D-MIM」を開発しました。このモデルによって、銀河形成シミュレーションの中でも多くの計算資源を必要とする超新星爆発の部分を、高速に再現することに成功しました。特に、分子雲内で起こった超新星爆発に伴うシェル構造(注7)が膨張し密度が変化する様子を、高速に再現します(図2)。3D-MIMの開発は、動画生成技術を基盤として、平島敬也大学院生を筆頭に独自に拡張が行われました。
この新しいモデルを使用すると、超新星爆発の影響を直接受ける可能性のある領域の大きさを事前に予測することができます(図2)。その結果、計算上の遅延を引き起こす可能性のある特定のエリアを事前に特定し、そこに特化し最適化されたアルゴリズムで計算を行うことで、計算効率を大幅に向上させることが期待されます。
この深層学習モデルは、大規模な分子雲内で超新星爆発を起こしたシミュレーションを大量に学習しています。このシミュレーションデータの作成は、国立天文台の天文学専用スーパーコンピュータ「アテルイⅡ」(注8)を用いました。モデルの学習には、東京大学のスーパーコンピュータ「Wisteria/BDEC-01 Aquarius」(注9)のNVIDIA A100 GPUを用いました。モデルの推論の最適化は、理化学研究所のスーパーコンピュータ「富岳」で行いました。富岳での推論高速化には株式会社モルフォから提供された「SoftNeuro®」を利用しました。
〈今後の展望〉本研究で開発された新しい深層学習モデルは、今後、銀河形成シミュレーション・コード「ASURA-FDPS」に組み込まれる予定です。スーパーコンピュータ「富岳」上では、深層学習モデルの最適化作業も進めています。この新しいアプローチにより計算が効率化されると、天の川銀河のような比較的大きな銀河内のひとつひとつの星の動きまで非常に詳しく再現したシミュレーションが可能となります。
また、本プロジェクトの進展により、ITおよびAI産業と天文学研究の新たな相乗効果も期待されます。これまで、本プロジェクトは株式会社モルフォと連携し、深層学習の推論速度の向上を実現しました。さらに「富岳」を用いた実験では、本研究で開発した新技術によって計算の効率やエネルギー消費の面で大きな改善が見られました。この技術は、スマートフォン上のAIアプリケーションを高速化する際にも利用されています。今後もスーパーコンピュータ「富岳」や深層学習などの先進技術を天文学研究に応用していく中で、学術・産業の連携の強化と技術の発展が期待されます。
深層学習モデル3D-MIMの公開リポジトリ
〇関連情報:
「東京大学、東北大学、神戸大学が推進する、深層学習による超新星爆発シェルの膨張予測を用いた高解像度銀河形成シミュレーションの高速化プロジェクトに、モルフォの『SoftNeuro®』を提供 ~スーパーコンピュータ「富岳」における深層学習を用いた3Dシミュレーションを支援~」(2022/11/16)
「モルフォ、『SoftNeuro』の提供を通じ、東京大学、東北大学、神戸大学が推進するスーパーコンピュータ「富岳」上での深層学習を用いた3Dシミュレーションの推論の約19倍高速化を実現」(2023/1/24)
雑誌名 | Monthly Notices of the Royal Astronomical Society |
---|---|
論文タイトル | 3D-Spatiotemporal Forecasting the Expansion of Supernova Shells Using Deep Learning toward High-Resolution Galaxy Simulations |
著者 | Keiya Hirashima*, Kana Moriwaki, Michiko S. Fujii, Yutaka Hirai, Takayuki R. Saitoh, Junichiro Makino |
DOI番号 | 10.1093/mnras/stad2864 |
注1 超新星爆発
大質量の星が寿命の終わりに巨大な爆発を起こす現象。この爆発で宇宙に重元素が放出され、新しい星や惑星が形成される材料となる。これにより銀河の進化と多様性が支えられている。
注2 星形成
星間ガス(主に水素からなるガス)から星が作られる現象のこと。
注3 銀河形成シミュレーション
宇宙の初期条件から現在までの銀河の進化を数値的に再現するアプローチ。重力、ガス流動、星形成・超新星爆発、放射などの物理プロセスを考慮し、銀河の形成と進化のメカニズムを理解するために行われる。これを通じて、観測データと理論的な予測を照らし合わせ、天文学的な課題を探求する。
注4 深層学習
AIの一分野で、大量のデータを利用して多層のニューラルネットワークを学習させる技術。人間の脳の動きを模倣したモデルを使い、画像認識や言語処理などで高い性能を示す。
注5 分子雲
星間ガスの中の水素が分子状態で存在する低温の星間ガス雲のこと。
注6 スーパーコンピュータ「富岳」
理化学研究所と富士通が共同で開発した世界最高峰の理論演算性能 1.07 エクサフロップス(1 秒間に倍精度浮動小数点計算を 100京回行う)でさまざまな科学技術計算に利用されている。
注7 超新星爆発のシェル構造
超新星爆発の際に生じる球殻状の高密度な星間ガス。超新星爆発のエネルギーにより、吹き飛ばされた恒星の外層は高速で非等方に膨張して、周囲の星間物質(星間ガス)との間に衝撃波を形成し、高温・高密度のガスを生じさせる。
注8 スーパーコンピュータ「アテルイ Ⅱ」
国立天文台が運用するシミュレーション天文学専用のスーパーコンピュータ(Cray XC50)。岩手県奥州市の国立天文台水沢キャンパスに設置され、理論演算性能3.087 ペタフロップス(1 秒間に浮動小数点計算を 3000 兆回行う)をほこる。
注9 スーパーコンピュータ「Wisteria/BDEC-01 Aquarius」
東京大学が運用するデータ科学・機械学習用のスーパーコンピュータ。NVIDIA A100 GPUなどで構成され、理論演算性能7.2ペタフロップス(1 秒間に浮動小数点計算を 7200 兆回行う)をほこる。
共同プレスリリース
戸谷 友則(天文学専攻 教授)
東京大学大学院理学系研究科の戸谷友則教授らによる研究グループは、「高速電波バースト(注1)」と呼ばれる謎の天体現象の統計的性質を精密に調べることで、地球の地震と性質がそっくりの「余震」が起きていることを明らかにしました。高速電波バーストは超高密度物質でできた中性子星(注2)で起きていると考えられていますが、その発生メカニズムが中性子星表面の固体地殻で発生している地震(星震)に関連していることを強く示唆する結果です。以前から理論的には、中性子星で地震のような現象が起きている可能性が議論されてきましたが、これほど類似した現象が実際に確認されたのは初めてのことです。今回の結果は高速電波バーストの起源解明に大きな手がかりとなるだけでなく、余震の性質を詳しく調べることで、中性子星の内部物質の情報を引き出し、原子核物理学などの基礎物理法則についても新たな知見を得る可能性を示すものです。
〈研究の背景〉今、天文学において最も謎に満ちた天体として注目されているのが「高速電波バースト(fast radio burst, FRB)」です。わずか数ミリ秒という短い時間で、電波で輝く突発天体です。2007年に最初の発見報告があり、本格的に研究が活発化したのは2013年以降で、まだまだ謎の多い天体です。銀河系の外、それも数十億光年という宇宙論的な遠距離からやってくると考えられていて、これまでに600個以上検出されています。そしてそのうちの50個ほどは、繰り返してバーストを起こす「リピーター」であることがわかっています(その他のものが、一度だけ爆発するのか、ずっと観測すればいつか爆発を繰り返すのかは、まだよくわかっていません)。いくつかの活発なFRB源からは、すでに数千回ものバーストが検出されています。
リピーターFRBを引き起こしている天体は中性子星と考えられています。太陽より8倍以上重い星がその一生の最期に重力で潰れて、超新星爆発(注3)を起こした後に残されるのが中性子星で、質量は太陽の1〜2倍程度ですが、その半径はわずかに10 km ほどで、1 cm3あたりの重量がなんと1兆kgという超高密度天体です(図1)。銀河系内に一千個以上見つかっている「パルサー」は、磁気をもって回転する中性子星が周期的なパルスを発するものです。
中性子星の中でも特に FRBと関連が深いと見られているのが「マグネター(注4)」です。普通のパルサーの100倍以上、100兆ガウス(100億テスラ)という強力な磁気を帯びた中性子星で、銀河系内に数十個見つかっており、時折、ガンマ線やX線でフレア(爆発的な増光)が観測されています。マグネターからFRBが検出された例もあります。しかし、マグネターがどのようにしてFRBを引き起こすのか、その発生メカニズムはほとんどわかっていません。
マグネターの持つ強い磁気エネルギーは徐々に中性子星内部から浮上してきて、それが中性子星表面を覆う固体地殻を歪め、そこに蓄積されたエネルギーがあるとき突然、地震(星震)によって解放されます。これがマグネターで起こる爆発現象だとする説が現在有力です。そのため、地球で起きる地震や、太陽表面で発生するフレア(太陽表面の磁気エネルギーが爆発的に解放される現象)との類似性がこれまで議論されてきました。
〈研究の内容〉今回、研究チームが着目したのは、一つの中性子星で発生している多数のFRBの発生時刻の統計的性質です。最も活動的な3つのFRB源から検出された7,000回に近いバーストの発生時刻とバーストのエネルギーの間に相関があるかを調べるため、二点相関関数と呼ばれる数学的な手法を初めてFRBに適用しました。その結果、一つのバーストが発生した直後は、関連した「余震」のバーストが起きやすくなっていることがわかりました。そして余震の起きやすさ(頻度)が、経過時間のべき乗(1/tp)で減衰することもわかりました(図2)。興味深いことに、余震の頻度がこのように変化することは、地球の地震ではよく知られています。これは大森房吉が1894年に提唱し、宇津徳治が1957年に数学的に拡張したもので、世界的に「大森法則」「大森・宇津法則」(注5)と呼ばれているものです。実際、研究チームが日本の地震データに今回の解析手法を適用すると、図2のように大変よく似ていることが確認されました。
類似点はそれだけではありません。あるバースト(または地震)の後、余震が起こる確率が10〜50%というのも、FRBと地震で共通していました。また、FRBや地震の活動性は変動しており、活動性の高い時期は多くのバーストや地震が起きます。しかしこの余震を起こす確率は、どちらの現象でも普遍的で、常に安定して同じ確率で起きていることもわかりました。さらには、あるバースト/地震とそれに続く余震の間には、エネルギーの相関は見られないことも共通しています。唯一異なるのは、大森法則のべき指数pの値だけ(FRBが2程度、地震は1程度)です。これだけの類似点が偶然の一致で生じたとは考えにくく、2つの現象の間に本質的な共通点があることを示唆します。一方で、太陽フレアに同じ解析を行ったところ、太陽フレアはFRBや地震とは全く異なるという結果が得られました。
過去の研究では、マグネターにおけるフレアと、地震や太陽フレアとの間には大まかな類似点(エネルギー分布がべき乗になるなど)があるという程度の議論しかなされていませんでした。今回の研究により、余震の性質について言えば、FRBと地震の間には驚くほど具体的な類似性が見られるのと同時に、太陽フレアとははっきり異なるということがわかりました。太陽フレアもマグネターも、どちらも磁気エネルギーで起こる現象と考えられますが、異なるのは、太陽表面は気体(流体)であるのに対し、中性子星表面や地球の地殻は固体であるということです。このことはFRB現象が、中性子星表面の固体地殻に蓄積されたエネルギーが地殻の破壊によって突発的に解放されるという、地震によく似たものであることを強く示唆しています。中性子星以外の様々な天文現象を見渡しても、ここまで具体的に地震との類似性を示すものは他にありません。謎の天体、FRBの起源を解明する上で、強力な手がかりとなります。
〈今後の展望〉リピーターFRBの観測データは今後も増え続けると期待されます。より多くのFRB源からのバーストデータを今回の手法で解析すれば、FRBの余震の性質の普遍性や、FRBの他の性質との関連を調べることができ、FRB現象の理解をさらに深められるでしょう。また、地震の余震の起きやすさの法則(大森法則)は、地球の地殻の物理的性質や破壊プロセスに関連していると考えられています。たとえば大森法則のp値の違いを理論モデルと比較検討することで、中性子星の固体地殻の物理的性質に関する情報を引き出せるかもしれません。中性子星の内部物質は、宇宙の中でも物質が最も高密度に凝縮しているところなので、原子核物理学など物理学の基礎理論の検証という観点でも重要です。今回の研究で、FRBを使って中性子星の内部物質を探るという新たな可能性が見えてきたと言えるでしょう。
雑誌名 | Monthly Notices of the Royal Astronomical Society |
---|---|
論文タイトル | Fast radio bursts trigger aftershocks resembling earthquakes, but not solar flares |
著者 | Tomonori Totani (*) and Yuya Tsuzuki |
DOI番号 | 10.1093/mnras/stad2532 |
注1 高速電波バースト(fast radio burst, FRB)
数ミリ秒程度の短い継続時間で、突然、電波で輝く突発天体。到着する電波の特徴から大まかな距離が推定でき、銀河系の外、それも宇宙論的遠距離(数十億光年)の遠方から来ていると考えられています。その正体はまだ謎に包まれていますが、繰り返して発生する種族は中性子星で起きていると考えられています。
注2 中性子星
超新星爆発の後、重力で潰れた元の星の鉄コアが超高密度のコンパクトな天体として残ったもの。質量は太陽の1〜2倍、半径は10 km ほどで、その内部密度は原子核の内部密度に匹敵します。そのような高密度では、電子は陽子と反応して中性子になるという性質があり、陽子がほとんどなく、中性子を主成分とするために中性子星と呼ばれます。
注3 超新星爆発
太陽より8倍以上重い恒星は、その進化の最期に中心部の鉄コアが重力で潰れ、中性子星かブラックホールとなります。その際に解放される巨大な重力エネルギーの一部が星の外層を吹き飛ばして、超新星爆発と呼ばれる巨大な爆発現象を起こします。
注4 マグネター
普通の中性子星は1兆ガウス程度の磁場を持ち、パルサーとして観測されています。しかし一部の中性子星は100兆ガウス以上の強磁場を持つことが知られ、マグネターと呼ばれます。その強大な磁気エネルギーが時々解放され、X線やガンマ線で突然明るくなる「フレア」と呼ばれる爆発現象を引き起こします。
注5 「大森法則」「大森・宇津法則」
ある大きな地震の後、多数の余震が発生します。その余震の発生頻度が時間tとともに 1/t の形で下がっていくことを大森房吉が1894年に発見しました。それを時間のべき乗、1/tp に拡張したのが宇津徳治です。元々は、一つの大きな地震の後に発生する多数の余震についてのものでしたが、その後の研究で、比較的静穏な状態でも、一つ一つの地震の後に、大森・宇津法則に従う余震が起きていることがわかっています。