【プレスリリース】
小惑星リュウグウに彗星塵が衝突した痕跡を発見
―太陽系遠方から有機物を含む彗星の塵が供給されていたことを示唆―

共同プレスリリース
橘 省吾(宇宙惑星科学機構/地球惑星科学専攻 教授)

小惑星の表面は大気に覆われていないため、太陽風や宇宙の塵が降り注ぎ、小惑星最表面の物質の化学組成などの特徴を変化させます。東北大学大学院理学研究科地学専攻の松本恵助教と中村智樹教授ら、立命館大学、京都大学、東京大学などとの共同研究チームは、探査機はやぶさ2が小惑星リュウグウから持ち帰った岩石粒子の表面を走査型電子顕微鏡で観察し、小惑星表面に宇宙の小さな塵が衝突してできた大きさ5~20マイクロメートル程度の溶融物を複数発見しました。溶融物の3次元CT観察や化学組成分析を行った結果、溶融物は、衝突した彗星由来の塵とリュウグウの表面物質が高温で融けて混ざり合うことで生成したことが分かりました。

彗星は太陽系の遠方で形成され、生命の材料となり得る有機物を多く含むことが知られています。彗星塵の衝突による溶融物の形成は、現在から約500万年前の間に、現在の小惑星リュウグウの軌道上で起こった可能性が高く、リュウグウには、ごく最近まで、太陽系の遠方から有機物を含む彗星の塵が供給されていたと考えられます。

本研究の成果は、2024年1月19日に米国科学振興協会(AAAS)が発行する学術誌 Science Advances に掲載されました。

図:(左)リュウグウ粒子表面に見つかった溶融物。丸みを帯びており、水滴のような見かけをしている。
(右)溶融物断面のCT像。多くの気泡を含んでいることがわかる。

詳細については、以下をご参照ください。

理学系研究科web:https://www.s.u-tokyo.ac.jp/ja/press/10185/
掲載URL:https://www.science.org/doi/10.1126/sciadv.adi7203

【プレスリリース】
小惑星リュウグウに彗星塵が衝突した痕跡を発見
―太陽系遠方から有機物を含む彗星の塵が供給されていたことを示唆― は
コメントを受け付けていません
News, UTOPS-News

Read more

高校生を対象とした天文学実習を開催しました

2024年1月20日(土)、21日(日)の2日間、長野県諏訪清陵高校,長野県諏訪二葉高校、長野県松本美須々ケ丘高校、岐阜県立恵那高校の生徒を対象に、天文学実習をおこないました。銀河の写真から、銀河までの距離を推定し、それらの銀河の後退速度を使って、宇宙の年齢を考えてもらいました。

高校生を対象とした天文学実習を開催しました はコメントを受け付けていません 社会教育活動, News, UTOPS-News

Read more

【プレスリリース】
リュウグウの岩石試料が始原的な隕石より黒いわけ
―地球に飛来した隕石は大気と反応し「上書き保存」されて明るく変化した―

共同プレスリリース
橘 省吾(宇宙惑星科学機構/地球惑星科学専攻 教授)

小惑星回収試料や隕石の反射スペクトルは、観測で得られる小惑星の反射スペクトルから小惑星の構成物質を特定するための手がかりとなります。

東北大学大学院理学研究科地学専攻の天野香菜大学院生(現、客員研究者)、中村智樹教授、国立研究開発法人 産業技術総合研究所の松岡萌研究員、東京大学大学院理学系研究科附属宇宙惑星科学機構・地球惑星科学専攻の橘省吾教授らの研究グループは、小惑星探査機はやぶさ2が小惑星リュウグウから回収した試料を地球大気と反応させないように工夫して反射スペクトルを測定しました。リュウグウ試料、リュウグウと同種の小惑星から飛来した隕石、および隕石を実験的に加熱した試料を比較し、隕石が地球大気の水や酸素と反応したことでその反射スペクトルが宇宙にあった状態よりも明るく変化したことを示しました。本成果を踏まえ、隕石の地上での変質によって反射スペクトルがどのように変化しうるかを考慮することで、観測によって小惑星の構成物質を特定する精度の向上が期待されます。

本成果は2023年12月7日に米国科学振興協会(AAAS)が発行する学術誌 Science Advancesに掲載されました。

図:リュウグウ試料(グラフ中の青線)、加熱していないCIタイプ隕石(黒の点線)、300度で加熱したCIタイプ隕石(赤線)の反射スペクトル。

詳細については、以下をご参照ください。

【プレスリリース】
リュウグウの岩石試料が始原的な隕石より黒いわけ
―地球に飛来した隕石は大気と反応し「上書き保存」されて明るく変化した― は
コメントを受け付けていません
News, UTOPS-News

Read more

【プレスリリース】
小惑星リュウグウでみつかった窒化した鉄の鉱物
―太陽系の遠方から辿り着いた窒素に富む塵―

共同プレスリリース
瀧川 晶(地球惑星科学専攻 准教授)
橘 省吾(宇宙惑星科学機構/地球惑星科学専攻 教授)

太陽から遠く離れた場所で生まれた氷天体や彗星にはアンモニウム塩のような窒素化合物が大量に貯蔵されています。このような窒素を含む固体は生命の材料物質としてとても重要だと考えられていますが、地球軌道の地域に輸送される証拠は見つかっていませんでした。本研究では、地球の近くに軌道をもつ小惑星リュウグウの砂を電子顕微鏡で調べ、砂のごく表面が窒化した鉄(窒化鉄:Fe4N)に覆われていることを発見しました。窒化鉄は、磁鉄鉱と呼ばれる鉄原子と酸素原子の鉱物の表面で見られます。我々は、氷天体からやってきたアンモニア化合物を大量に含む微小な隕石がリュウグウに衝突して、磁鉄鉱の表面で化学反応が起こり、この窒化鉄が形成したと考えました。小惑星の表層では、太陽から吹くイオンの風(太陽風)の照射などによって磁鉄鉱の表面から酸素が失われていて、アンモニアと反応しやすい金属鉄がごく表面に形成しています。このため、磁鉄鉱の表面ではアンモニアに由来する窒化鉄の合成が促されたと推測しています。この微小隕石は太陽系遠方の氷天体からやってきたかもしれず、これまで気づかれてきたよりも多くの量の窒素化合物が太陽系の地球付近に輸送されて、生命の材料となった可能性があります。

本成果は、京都大学白眉センターの松本徹 特定助教、理学研究科の野口高明教授、三宅亮准教授、伊神洋平助教、化学研究所の治田充貴准教授、および国際的な共同研究者のグループによって行われ、2023年11月30日に英国の国際学術誌「Nature Astronomy」にオンライン掲載されました。

本研究成果には、地球惑星科学専攻の 橘省吾教授、瀧川晶准教授が参加しています。

(A) 小惑星リュウグウの試料に含まれる磁鉄鉱粒子。(B)丸い磁鉄鉱の断面画像。

詳細については、以下をご参照ください。

【プレスリリース】
小惑星リュウグウでみつかった窒化した鉄の鉱物
―太陽系の遠方から辿り着いた窒素に富む塵― は
コメントを受け付けていません
News, UTOPS-News

Read more

【プレスリリース】
リュウグウ起源天体の水循環が作り出すクロム同位体不均質
-小惑星帰還試料の同位体分析における重要な指針を提示-

共同プレスリリース
飯塚 毅(地球惑星科学専攻 准教授
橘 省吾(宇宙惑星科学機構/地球惑星科学専攻 教授)

東京工業大学 理学院 地球惑星科学系の横山哲也教授、東京大学 大学院理学系研究科の飯塚毅准教授と橘省吾教授、北海道大学 大学院理学研究院の圦本尚義教授らの研究グループは、Cb型小惑星「リュウグウ」の同位体組成を測定し、リュウグウで生じた激しい水質変成と水循環により、クロム同位体組成の局所的な不均質が生じたことを突き止めました。

リュウグウ試料の初期分析により、Cb型小惑星「リュウグウ」はイヴナ型炭素質隕石に似た化学組成や鉱物組成を持つことが明らかとなったが、クロムの核合成起源同位体異常については、リュウグウとイヴナ型炭素質隕石の間にわずかなズレが見られており、その原因究明が待たれていました。

研究グループは、計5つのリュウグウ試料を対象に、クロム(54Cr)とチタン(50Ti)の核合成起源同位体異常を測定しました。その結果、54Cr同位体異常はイヴナ型隕石の平均値より高い値から低い値まで、有意な変動が見られました。この変動は、短寿命核種であるマンガン-53(53Mn)の放射壊変に由来するクロム同位体(53Cr)の変動と逆相関することから、リュウグウ起源天体で生じた水質変成・水循環により54Crが乏しい箇所と、Mnに富む炭酸塩(53Crに富む)箇所が生じたと考えられます。また、各々のリュウグウ試料(7~24 mg)を合算した物質(約90 mg)の54Cr同位体異常は、イヴナ型炭素質隕石の平均値と一致しました。すなわち、本来の同位体組成を正しく知るには、一定の均質試料の分析が必要といえます。OSIRIS-RExが持ち帰った小惑星ベヌー試料の初期分析においても、不均質の影響を避けるために、一定量(0.1 g以上)の試料を用いた分析が望ましいことが判明しました。

図: 今回分析された全てのリュウグウ試料を合算(約90 mgに相当)した場合のε50Tiおよびε54Cr値。リュウグウの分析試料サイズが大きくなると、先行研究のイヴナ型炭素質隕石の値と矛盾しないことがわかる。(© Yokoyama et al., 2023を一部改変)

本研究成果は、日本時間2023年11月9日に、Science Advances誌にオンライン掲載されました。

詳細については、以下をご参照ください。

【プレスリリース】
リュウグウ起源天体の水循環が作り出すクロム同位体不均質
-小惑星帰還試料の同位体分析における重要な指針を提示- は
コメントを受け付けていません
News, UTOPS-News

Read more

【プレスリリース】
ついに解明!超巨大ブラックホールの成長メカニズムと銀河中心の物質循環

共同プレスリリース
河野 孝太郎(天文学教育研究センター 教授)

国立天文台の泉拓磨助教を中心とする国際研究チームは、アルマ望遠鏡を用いて、近傍宇宙にあるコンパス座銀河を約1光年という非常に高い解像度で観測し、超巨大ブラックホール周辺わずか数光年の空間スケールでのガス流とその構造を、プラズマ・原子・分子の全ての相において定量的に測定することに世界で初めて成功しました。その結果、超巨大ブラックホールへ向かう降着流を明確にとらえ、降着流が「重力不安定」と呼ばれる物理機構により生じていることをも明らかにしました。さらに、降着流の大半はブラックホールの成長には使われず、原子ガスか分子ガスとして一度ブラックホール付近から噴き出た後に、ガス円盤に舞い戻って再びブラックホールへの降着流と化す、あたかも噴水のようなガスの循環が起きていることも分かりました。超巨大ブラックホールの成長メカニズムの包括的な理解に向けた重要な成果です。

これらの観測成果は、Izumi et al. “Supermassive black hole feeding and feedback observed on sub-parsec scales”として米国学術雑誌 Science に2023年11月3日付で掲載 (DOI: 10.1126/science.adf0569) されました。

図:アルマ望遠鏡で観測したコンパス座銀河の中心部。中密度分子ガスを反映する一酸化炭素(CO)の分布を赤色、原子ガスを反映する炭素原子(C)の分布を青色、高密度分子ガスを反映するシアン化水素(HCN)の分布を緑色、プラズマガスを反映する水素再結合線(H36α)の分布をピンク色で示しています。図の中央には活動銀河核が存在します。この銀河は外側から内側にいくにつれて傾いた構造を持つことが知られており、中心部では高密度分子ガス円盤を横から見る形に近づきます。この高密度分子ガス円盤(図の中心部の緑色領域:右上のズームも参照)の大きさは直径約6光年程度で、アルマ望遠鏡の高い解像度で初めて明確に捉えることができました。プラズマ噴出流は、この高密度分子ガス円盤とほぼ直交する方角に出ています。Credit: ALMA (ESO/NAOJ/NRAO), T. Izumi et al.

なお、本研究は、天文学教育研究センターの河野孝太郎教授が参加しています。

詳しくは、国立天文台 、国立天文台アルマプロジェクト のホームページをご覧ください。

【プレスリリース】
ついに解明!超巨大ブラックホールの成長メカニズムと銀河中心の物質循環 は
コメントを受け付けていません
News, UTOPS-News

Read more

【プレスリリース】宇宙嵐を発達させるのは地球起源のプラズマだった
~「あらせ」衛星が従来の学説を覆す発見~宇宙嵐を発達させるのは地球起源のプラズマだった~

共同プレスリリース
笠原 慧 (地球惑星科学専攻 准教授
桂華 邦裕(地球惑星科学専攻 助教

国立大学法人東海国立大学機構 名古屋大学宇宙地球環境研究所のリン キスラー 教授(兼:米国ニューハンプシャー大学教授)、三好 由純 教授、堀 智昭 特任准教授らは、宇宙航空研究開発機構の浅村 和史 准教授、篠原 育 教授、東京大学大学院理学系研究科の笠原 慧 准教授、桂華 邦裕 助教、大阪大学の横田 勝一郎 准教授、及び米国研究者との国際共同研究で、宇宙嵐を引き起こしているのは、従来考えられてきた太陽起源のプラズマよりも、地球起源のプラズマが主要因であることを発見しました。

研究チームは、国際協力によって、日本のジオスペース探査衛星「あらせ」、米国 NASAや欧州ESAの合計4機の科学衛星のデータを用いて解析しました。その結果、地球近傍の宇宙空間(ジオスペース)で、太陽と地球起源のプラズマの組成を分離することに初めて成功し、宇宙嵐時に、地球磁気圏のプラズマが太陽起源から地球起源へと変化することを発見しました。また、宇宙嵐の発達において、はじめは地球起源の水素イオンが支配的であり、その後、地球起源の酸素イオンが宇宙嵐の主要因となることも同定しました。

これは、従来考えられてきた太陽起源のイオンだけでなく、地球起源のイオンも、宇宙嵐の発達に影響を与えることを示しています。宇宙嵐のときには地球周辺の宇宙環境が大きく変化し、人工衛星に障害が生じたり、地上で強い電流が流れたりして送電網に影響が及ぶことがあります。本研究は、宇宙嵐による宇宙環境の変化を理解したり、宇宙嵐を予測したりするためには、太陽からのプラズマだけではなく、地球からのプラズマの挙動を正確に理解する必要があることを示しており、これまでの宇宙嵐の理解に大きな変革を迫るものです。

本研究成果は、2023年10月30日午後7時(日本時間)付イギリス科学誌「Nature Communications」に掲載されました。

詳細については、以下をご参照ください。

図:日米欧の連携による太陽風とジオスペースの観測。本研究によって、太陽風起源ではなく、地球起源の水素イオンと酸素イオンが宇宙嵐を引き起こしていることが発見された。

【プレスリリース】宇宙嵐を発達させるのは地球起源のプラズマだった
~「あらせ」衛星が従来の学説を覆す発見~宇宙嵐を発達させるのは地球起源のプラズマだった~ は
コメントを受け付けていません
News, UTOPS-News

Read more

【プレスリリース】
AIが描く超新星爆発の広がり
―深層学習を用いた超新星爆発シミュレーションの高速再現技術―

共同プレスリリース
藤井 通子(天文学専攻 准教授)

発表のポイント

  • 動画生成技術を元にした深層学習モデルを応用して、3次元の超新星爆発シミュレーションの結果を高速に再現する新しいモデルを開発した。
  • 大規模な銀河形成シミュレーションにおける超新星爆発の計算のボトルネックを解消するために、深層学習を活用した高速化手法を世界で初めて提案した。
  • 本研究で開発した新しい深層学習モデルを導入することで、理化学研究所のスーパーコンピュータ「富岳」で実装中の高解像度銀河形成シミュレーションのさらなる高速化が期待される。
AIが超新星爆発を生成する概念図
(クレジット:Butusova Elena, Gorodenkoff/Shutterstock.com、平島敬也)

発表概要

超新星爆発(注1)は、銀河の星形成(注2)や元素分布に影響を与える重要な現象です。しかし、この超新星爆発の計算をこれまでの銀河形成シミュレーション(注3)に組み込むと、計算コストが増大し、最先端の計算機を使用しても、銀河内での超新星爆発の影響を直接的に計算するのは困難でした。東京大学大学院理学系研究科天文学専攻の平島敬也大学院生、藤井通子准教授、物理学専攻の森脇可奈助教らによる研究グループは、従来のシミュレーションに替わり深層学習(注4)を用いて超新星爆発の広がりを予測する手法を開発しました。今後、この深層学習による予測結果を銀河形成シミュレーションに組み込むことで、銀河形成シミュレーションの精度の向上と高速化が期待されます。

発表内容

〈研究の背景〉重い星が一生を終える際、超新星爆発と呼ばれる壮大な爆発を起こします。この爆発が分子雲(注5)の中で起きると、大量のエネルギーでガスを押しのけ、新しい星の形成を阻む一方で、一部のガスを加速させ乱流を駆動し、新しい星の形成を促進すると考えられています。また、この爆発は、私たちの生命に必要な元素(炭素、酸素、鉄など)を宇宙に散布します。そのため、超新星爆発の影響を正確に理解することが銀河の形成・進化過程を解明する上で不可欠となっています。

一方で、銀河は多数の星、ガス、ダスト(塵)、およびダークマターなどで構成されており、重力や流体の動き、冷却、そして超新星爆発など多様なプロセスが銀河の進化を駆動します。これらの相互作用を単純な方程式だけを使って説明するのは困難であるため、数値シミュレーションにより研究が進められてきました。このようなシミュレーションでは、銀河全体の巨大なスケール(約10万光年)から、数光年単位の細かなスケールまでを対象に計算しています(図1)。しかしながら、天の川のような大きな銀河全体のシミュレーションにおいて、超新星爆発の詳細な影響を再現するのは、最先端のスーパーコンピュータ「富岳」(注6)を使っても、計算量や効率性の観点から非常に難しい課題となっています。

図1:天の川銀河と超新星爆発のスケール比較の図
天の川銀河(左)の直径は約10万光年に及ぶ一方、超新星爆発の際に形成されるシェル(右)はわずか100光年と、銀河の1000分の1の大きさです。また、銀河円盤が一回転するのに数億年を要する中、シェルの膨張はわずか数千年という短期間で進行します。(クレジット:NASA/JPL-Caltech/ESO/R. Hurt、平島敬也)

〈研究の内容〉東京大学を中心とした研究チームは、動画生成技術を活用して、3次元の数値シミュレーションの結果を高速に再現する新しいモデル「3D-MIM」を開発しました。このモデルによって、銀河形成シミュレーションの中でも多くの計算資源を必要とする超新星爆発の部分を、高速に再現することに成功しました。特に、分子雲内で起こった超新星爆発に伴うシェル構造(注7)が膨張し密度が変化する様子を、高速に再現します(図2)。3D-MIMの開発は、動画生成技術を基盤として、平島敬也大学院生を筆頭に独自に拡張が行われました。

この新しいモデルを使用すると、超新星爆発の影響を直接受ける可能性のある領域の大きさを事前に予測することができます(図2)。その結果、計算上の遅延を引き起こす可能性のある特定のエリアを事前に特定し、そこに特化し最適化されたアルゴリズムで計算を行うことで、計算効率を大幅に向上させることが期待されます。

図2:超新星爆発に伴うシェル構造のシミュレーション結果(左)と我々の手法による予測結果(右)
黃色はガスの密度が大きい領域を表しています。また、1 Myr は100万年を意味します。中心(赤い☓印)で超新星爆発が起こり、爆発によって周囲のガスが掃き寄せられる様子がAIを使った手法でも再現されました(クレジット:平島敬也)

この深層学習モデルは、大規模な分子雲内で超新星爆発を起こしたシミュレーションを大量に学習しています。このシミュレーションデータの作成は、国立天文台の天文学専用スーパーコンピュータ「アテルイⅡ」(注8)を用いました。モデルの学習には、東京大学のスーパーコンピュータ「Wisteria/BDEC-01 Aquarius」(注9)のNVIDIA A100 GPUを用いました。モデルの推論の最適化は、理化学研究所のスーパーコンピュータ「富岳」で行いました。富岳での推論高速化には株式会社モルフォから提供された「SoftNeuro®」を利用しました。

〈今後の展望〉本研究で開発された新しい深層学習モデルは、今後、銀河形成シミュレーション・コード「ASURA-FDPS」に組み込まれる予定です。スーパーコンピュータ「富岳」上では、深層学習モデルの最適化作業も進めています。この新しいアプローチにより計算が効率化されると、天の川銀河のような比較的大きな銀河内のひとつひとつの星の動きまで非常に詳しく再現したシミュレーションが可能となります。

また、本プロジェクトの進展により、ITおよびAI産業と天文学研究の新たな相乗効果も期待されます。これまで、本プロジェクトは株式会社モルフォと連携し、深層学習の推論速度の向上を実現しました。さらに「富岳」を用いた実験では、本研究で開発した新技術によって計算の効率やエネルギー消費の面で大きな改善が見られました。この技術は、スマートフォン上のAIアプリケーションを高速化する際にも利用されています。今後もスーパーコンピュータ「富岳」や深層学習などの先進技術を天文学研究に応用していく中で、学術・産業の連携の強化と技術の発展が期待されます。
深層学習モデル3D-MIMの公開リポジトリ

〇関連情報:
「東京大学、東北大学、神戸大学が推進する、深層学習による超新星爆発シェルの膨張予測を用いた高解像度銀河形成シミュレーションの高速化プロジェクトに、モルフォの『SoftNeuro®』を提供 ~スーパーコンピュータ「富岳」における深層学習を用いた3Dシミュレーションを支援~」(2022/11/16)

「モルフォ、『SoftNeuro』の提供を通じ、東京大学、東北大学、神戸大学が推進するスーパーコンピュータ「富岳」上での深層学習を用いた3Dシミュレーションの推論の約19倍高速化を実現」(2023/1/24)

論文情報

雑誌名Monthly Notices of the Royal Astronomical Society
論文タイトル3D-Spatiotemporal Forecasting the Expansion of Supernova Shells Using Deep Learning toward High-Resolution Galaxy Simulations
著者Keiya Hirashima*, Kana Moriwaki, Michiko S. Fujii, Yutaka Hirai, Takayuki R. Saitoh, Junichiro Makino
DOI番号10.1093/mnras/stad2864

用語解説

注1  超新星爆発
大質量の星が寿命の終わりに巨大な爆発を起こす現象。この爆発で宇宙に重元素が放出され、新しい星や惑星が形成される材料となる。これにより銀河の進化と多様性が支えられている。

注2  星形成
星間ガス(主に水素からなるガス)から星が作られる現象のこと。

注3  銀河形成シミュレーション
宇宙の初期条件から現在までの銀河の進化を数値的に再現するアプローチ。重力、ガス流動、星形成・超新星爆発、放射などの物理プロセスを考慮し、銀河の形成と進化のメカニズムを理解するために行われる。これを通じて、観測データと理論的な予測を照らし合わせ、天文学的な課題を探求する。

注4  深層学習
AIの一分野で、大量のデータを利用して多層のニューラルネットワークを学習させる技術。人間の脳の動きを模倣したモデルを使い、画像認識や言語処理などで高い性能を示す。

注5  分子雲
星間ガスの中の水素が分子状態で存在する低温の星間ガス雲のこと。

注6  スーパーコンピュータ「富岳」
理化学研究所と富士通が共同で開発した世界最高峰の理論演算性能 1.07 エクサフロップス(1 秒間に倍精度浮動小数点計算を 100京回行う)でさまざまな科学技術計算に利用されている。

注7  超新星爆発のシェル構造
超新星爆発の際に生じる球殻状の高密度な星間ガス。超新星爆発のエネルギーにより、吹き飛ばされた恒星の外層は高速で非等方に膨張して、周囲の星間物質(星間ガス)との間に衝撃波を形成し、高温・高密度のガスを生じさせる。

注8  スーパーコンピュータ「アテルイ Ⅱ」
国立天文台が運用するシミュレーション天文学専用のスーパーコンピュータ(Cray XC50)。岩手県奥州市の国立天文台水沢キャンパスに設置され、理論演算性能3.087 ペタフロップス(1 秒間に浮動小数点計算を 3000 兆回行う)をほこる。

注9  スーパーコンピュータ「Wisteria/BDEC-01 Aquarius」
東京大学が運用するデータ科学・機械学習用のスーパーコンピュータ。NVIDIA A100 GPUなどで構成され、理論演算性能7.2ペタフロップス(1 秒間に浮動小数点計算を 7200 兆回行う)をほこる。

【プレスリリース】
AIが描く超新星爆発の広がり
―深層学習を用いた超新星爆発シミュレーションの高速再現技術― は
コメントを受け付けていません
News, UTOPS-News

Read more